

Journal of Alloys and Compounds 408-412 (2006) 598-602

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Orthorhombic distortion in $Ca_{2-x}Gd_xMnO_4$

Junichi Takahashi^{a,*}, Hidenori Nakada^b, Hirohisa Satoh^b, Naoki Kamegashira^b

^a Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan ^b Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan

Received 30 July 2004; received in revised form 22 November 2004; accepted 15 December 2004 Available online 29 June 2005

Abstract

The crystal structure of the polycrystalline $Ca_{2-x}Gd_xMnO_4$ has been investigated by Rietveld method using X-ray diffraction patterns measured at room temperature. Within the limited substitution range, 0 < x < 0.45, $Ca_{2-x}Gd_xMnO_4$ has the K_2NiF_4 -type structure. In x = 0.2 X-ray spectrum shows the tetragonal primitive structure (space group *I4/mmm*). In the range of *x* from 0.35 to 0.45 an orthorhombic superstructure (space group *Pccn*), whose unit cell relates to the tetragonal primitive structure with $a_0 \approx b_0 \approx \sqrt{2}a_t$, $c_0 \approx c_t$, is refined. The orthorhombic superstructure contains the oxygen connected MnO₆ octahedra with a different tilt angle between *x*- and *y*-axes of the orthorhombic unit cell. The magnitude of the rotation of the MnO₆ octahedra around *x*-axis increases with increasing the substitution of *x* in $Ca_{2-x}Gd_xMnO_4$, and that around *y*-axis shows the maximum at x = 0.4.

© 2005 Elsevier B.V. All rights reserved.

Keywords: K2NiF4-type oxides; Orthorhombic structure; Calcium rare-earth manganate; Oxygen octahedron

1. Introduction

 $Ca_{2-x}Ln_xMnO_4$ solid solutions (Ln = rare earth) were originally prepared by Daoudi and Le Flem for Ln = Pr, Nd, Sm–Gd [1], and by Chaumont et al. for Ln = Y [2]. Magnetic [3,4], electric [4,5], magnetoresistance [6] and charge ordering [7] properties of the solid solutions have been recently investigated with the analogy of the perovskite, $Ca_{1-x}Ln_xMnO_3$. Phase identification showed that the $Ca_{2-x}Ln_xMnO_4$ has the K₂NiF₄-type structure without an ordering of Ca and Ln ions, and that there exist a limit of substitution for Ca by Ln: x < 0.3 for Ln = Y, x < 0.5for Ln = Pr-Gd and x < 0.45 for other rare-earth elements [1,2,8]. According to the structural refinement of the $Ca_{2-x}Ln_xMnO_4$ series, it has been known for the sequential structure changes at room temperature that the Ca₂MnO_{4.00} (x=0) has a tetragonal superstructure with the apace group of $I4_1/acd$ [9,10] and that the Ca_{2-x}Ln_xMnO₄ (0.05 < x < 0.25) has the primitive tetragonal structure (*I*4/*mmm*) [8,11].

It has been confirmed that for higher values of x in $Ca_{2-x}Ln_xMnO_4$ (0.25 < x) the corresponding phase crystallizes in the orthorhombic superstructure which is related to the primitive tetragonal structure as $a_0 \approx \sqrt{2}a_t$, $b_0 \approx \sqrt{2}a_t$ and $c_0 \approx c_t$, where the notations of *a*, *b* and *c* are the unit cell parameters, and the subscripts o and t refer to the orthorhombic and the tetragonal, respectively. The structural phase transition of the orthorhombic structure was studied by use of high- and low-temperature X-ray and electron diffractometry: The orthorhombic structure of Ca_{1.5}Nd_{0.5}MnO₄ changes to the primitive tetragonal one between 294 and 393 K [4] and Ca_{1.7}Sm_{0.3}MnO₄ undergoes a low-temperature tetragonal phase below around 70 K [8,11,12]. The orthorhombic structure of the $Ca_{2-x}Ln_xMnO_4$ was predicted to have the space group of F222, Fmm2 or Fmmm [1]. The electron diffraction pattern of Ca1.75Pr0.25MnO4 showed two kinds of the candidate structure with Cmca (Abma) or C2cb as possible space groups (*Cmca* was chosen in their paper) [7]. Another kind of an orthorhombic structure with a space group of Pccn possesses in the K2NiF4-type oxides of (La,Nd)2CuO4 [13], (La,Nd,Sr)₂CuO₄ [14], (La,Sm,Sr)₂CuO₄ [15] and $(La,Ba)_2CuO_4$ [16] as in the low-temperature phase.

^{*} Corresponding author. Tel.: +81 22 217 5161; fax: +81 22 217 5211. *E-mail address:* junichi@tagen.tohoku.ac.jp (J. Takahashi).

 $^{0925\}text{-}8388/\$-$ see front matter @ 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2004.12.150

In this paper, the crystal structure of the orthorhombic $Ca_{2-x}Gd_xMnO_4$ with a K_2NiF_4 -type structure was analyzed by the X-ray powder diffraction and the Rietveld analysis on the basis of the candidate structure models, *Fmmm, Abma* and *Pccn*.

2. Experimental

Polycrystalline $Ca_{2-x}Gd_xMnO_4$ series were prepared from powders of CaCO₃ (4N-purity), Gd_2O_3 (4N) and Mn_2O_3 (3N) by solid-state reaction. The raw powders were pre-heated before weighting and mixing by the followings. CaCO₃ was heated at 673 K for 24 h in CO₂-gas and then slowly cooled to room temperature without stopping gas flow, Gd_2O_3 was treated with heating at 1273 K for 24 h in Ar-gas and then slowly cooled to room temperature without stopping gas flow, Mn_2O_3 was annealed at 1073 K for 72 h in air and then quenched to room temperature. These powders were mixed in a required atomic ratio with an agate mortar and pressed into pellets, which were then put into platinum boat. The pellets were fired at 1523 K for 72 h in air, followed by slowly cooled to room temperature.

X-ray powder diffraction data of the sample were measured using a diffractometer system equipped with a single crystal graphite monocromator (MAC MXP¹⁸ powder X-ray diffractometer). Diffraction patterns were collected with Cu K α radiation over a 2 θ range from 20° to 109° with a step width of 0.04° and counting time of 4.5–6.0 s (variable). The structural refinement was carried out by the Rietveld method (a computer program RIETAN [17,18]) using the whole 2 θ ranges of the collected diffraction data.

3. Results and discussion

Some raw materials were detected after calcinations of the sample with x values higher than 0.45 with the initial composition of $Ca_{2-x}Gd_xMnO_4$. This limitation of the element substitution is agreed with the previous report [1]. Fig. 1 shows the X-ray powder diffraction patterns of (a) $Ca_{1.8}Gd_{0.2}MnO_4$ and (b) $Ca_{1.6}Gd_{0.4}MnO_4$. It can be seen from Fig. 1a that Ca_{1.8}Gd_{0.2}MnO₄ has the primitive tetragonal cell (space group I4/mmm, unit cell dimension as $a_t \times a_t \times c_t$), which is so-called T structure. The X-ray diffraction pattern of Ca_{1.6}Gd_{0.4}MnO₄ (Fig. 1b) can be indexed with the orthorhombic superstructure, whose cell dimensions relate to $a_0 \approx b_0 \approx \sqrt{2}a_t$ and $c_0 \approx c_t$, since the peaks corresponding to hhl in the T structure are splitted into hkl and khl in the orthorhombic structure. This relationship reveals that the orthorhombic superstructure is distorted along the [110] direction of the T structure.

Fig. 2 shows the selected range of the X-ray powder diffraction pattern with the Rietveld refinement results for $Ca_{1.6}Gd_{0.4}MnO_4$ on the basis of the three space groups of *Fmmm*, *Abma* and *Pccn*. The structure model with the space

Fig. 1. X-ray powder diffraction data (Cu K α) of (a) Ca_{1.8}Gd_{0.2}MnO₄ and (b) Ca_{1.6}Gd_{0.4}MnO₄.

Fig. 2. The results of the Rietveld refinement for $Ca_{1.6}Gd_{0.4}MnO_4$ based on the structure models with the space groups of *Fmmm*, *Abma* and *Pccn*.

group of *Pccn* indicates that the refined profile curve is well agreed with superlattice line at $2\theta = 53.4^{\circ}$. In contrast, no superlattice line around $2\theta = 53^{\circ}$ appears in the case of the *Fmmm* and *Abma* structure models. The relative peak intensity at $2\theta = 53.4^{\circ}$ against the maximum one at $2\theta = 32.9^{\circ}$ (113 main peak, see Fig. 1b) is about 0.014, which is sensitive but measurable in the X-ray powder diffraction method. These facts suggest that the space group *Pccn* is most probable for the structure model of the distorted orthorhombic superstructure for the Ca_{1.6}Gd_{0.4}MnO₄.

The refined cell-constants, coordinations and *R*-factors for $Ca_{2-x}Gd_xMnO_4$ with the orthorhombic *Pccn* structure are summarized in Table 1. When we applied the *Fmmm* and *Abma* structure models to the refinement for the X-ray diffraction pattern of $Ca_{1.6}Gd_{0.4}MnO_4$, higher values of *R*-factors

Table 1 The refined cell parameters and *R*-factors for $Ca_{2-x}Gd_xMnO_4$

Space group <i>x</i> in composition	Pccn		
	0.35	0.40	0.45
Cell constant			
<i>a</i> (nm)	0.5322 1)	0.5332(1)	0.5340(1)
<i>b</i> (nm)	0.5361 (1)	0.5378 (1)	0.5382(1)
c (nm)	1.1755 (4)	1.1735 (1)	1.1735 (1)
Fractional coordinates			
Ca			
x	0.00(2)	0.00 (3)	0.000 (3)
у	0.010 2)	0.010(2)	0.010 (2)
z	0.3571 (4)	0.3573 (2)	0.3571 (2)
$B_{\rm eq} \ ({\rm nm}^2)$	0.00 (2)	0.004 (1)	0.002 (1)
Mn			
x	0	0	0
у	0	0	0
Z	0	0	0
$B_{\rm eq} \ ({\rm nm}^2)$	0.03 (2)	-0.000(1)	0.00045 (9)
01			
x	-0.00(7)	-0.01(1)	-0.015 (8)
у	-0.029(9)	-0.03(1)	-0.028(5)
z	0.167 (2)	0.1654 (9)	0.1653 (9)
$B_{\rm eq} ({\rm nm}^2)$	0.0023 (5)	0.012 (4)	0.021 (4)
02			
x	0.25	0.25	0.25
v	0.25	0.25	0.25
z	0.005 (13)	0.015 (9)	0.013 (5)
$B_{\rm eq}~({\rm nm}^2)$	0.01 (3)	0.002 (4)	0.0 (2)
03			
x	0.25	0.25	0.25
v	0.75	0.75	0.75
z	-0.007(9)	-0.009 (10)	-0.014(7)
$B_{\rm eq}~({\rm nm}^2)$	0.03 (3)	0.007 (5)	-0.00(3)
R _{wp}	15.13	10.12	9.65
Rp	12.06	7.77	7.16
R _e	7.08	7.25	7.10
R_1	3.72	1.89	2.68
R _F	2.72	2.05	3.47
$S = R_{\rm wp}/R_{\rm e}$	2.14	1.40	1.36

Note: Estimated standard deviations in the parentheses refer to the fast significant digits.

were resulted in, such as, for the *Fmmm* with $R_{wp} = 11.01$, $R_e = 7.26$, $R_I = 2.28$ and $R_F = 2.38\%$; for the *Abma* with $R_{wp} = 10.96$, $R_e = 7.26$, $R_I = 2.38$ and $R_F = 3.05\%$. By comparison, the *R*-factors for *Pccn* structure model showed smallest values. Therefore, it is confirmed that the space group *Pccn* is the most reliable for the distorted orthorhombic superstructure of the Ca_{2-x}Gd_xMnO₄.

Table 2 lists the interatomic distances and angles in $Ca_{2-x}Gd_xMnO_4$ (x=0.35, 0.40 and 0.45). The bond angles of Mn–O2–Mn and Mn–O3–Mn are 176.44° and 175.01° for x=0.35, 169.38° and 173.61° for x=0.4 and 170.80° and 170.10° for x=0.45, leading to that the magnitude of the bend in Mn–O–Mn increases with an increase of x.

It is well known that Mn^{3+} ion is the typical Jahn–Teller ion modifying MnO_6 octahedra, and that the orthorhombic distortion is introduced by the Mn^{3+}/Mn^{4+} mixed valence state caused by the substitution of Ca^{2+} by Ln^{3+} . Unfortunately, quantities of the anisotropic J–T distortion in the K_2NiF_4 -type oxides is hard to assess compared to the perovskite-type one, in particular, LaMnO₃ [19]. For example, MnO₆ octahedra in pure Ca₂MnO₄, which consists of only non J–T ions (Mn⁴⁺), are apparently distorted: Mn–O length is 0.185 nm within the *ab* plane and 0.192 nm along the *c* direction [10].

The K₂NiF₄-type structures with the space group of *Fmmm*, *Abma* (*Cmca*, *Bmab*) and *Pccn* are shown in Fig. 3. These crystal structures are distinguished with a displacement of oxygen ions concerning the BO₆ octahedra. In the *Fmmm* superstructure (Fig. 3a) the oxygen ions in the *ab* plane move toward [1 1 0] and [-1 1 0] directions within the plane as the position of the oxygen ions are (1/4, 1/4, 0) and (0, 0, z). In *Abma* model oxygen O₂ ions at (1/4, 1/4, z) move to [0 0 1]

Table 2 Interatomic distances within 3.0 Å in $Ca_{2-x}Gd_xMnO_4$

x	0.35	0.40	0.45
Ca			
01	0.224 (1)	0.226(1)	0.226(1)
O2	0.249(1)	0.248 (1)	0.250(1)
O3	0.268 (8)	0.275 (3)	0.277 (2)
O4	0.290(1)	0.293 (1)	0.290(1)
O5	0.268 (8)	0.261 (3)	0.260 (2)
O6	0.254 (3)	0.262 (4)	0.256 (4)
O7	0.261 (2)	0.257 (4)	0.256 (4)
O8	0.251 (3)	0.245 (3)	0.247 (2)
O9	0.245 (2)	0.249 (4)	0.250 (3)
Mn			
01	0.1971 (5)	0.1950 (5)	0.1947 (5)
O2	0.1890 (2)	0.1901 (4)	0.1901 (2)
O3	0.1896 (2)	0.1896 (4)	0.1897 (2)
O2–O3a ^a	0.2663 (3)	0.2667 (3)	0.2671 (2)
O2–O3b ^a	0.2690 (3)	0.2703 (3)	0.2701 (3)
01–02	0.276 (5)	0.272 (4)	0.273 (3)
01-02	0.270 (5)	0.273 (4)	0.271 (3)
O1–O3a ^a	0.269 (5)	0.270 (4)	0.270 (4)
O1–O3b ^a	0.278 (5)	0.274 (5)	0.274 (4)

^a a, Along *a*-axis; b, along *b*-axis.

Fig. 3. Structure models of the orthorhombic K_2NiF_4 -type oxides, A_2BO_4 , with the space group of (a) *Fmmm*, (b) *Abma* and (c) *Pccn*. The straight and cyclic allows indicate a direction of the oxygen displacement and of the rotation of the BO₆ octahedra, respectively.

and [00-1] directions (toward *z*-axis) as shown by straight allows in Fig. 3b. The *Pccn* superstructure is similar to the *Abma*, but the magnitude of the displacement of oxygen ions is different between O2 at (1/4, 1/4, *z*) and O3 at (1/4, 3/4, *z'*) with $z \neq z'$, as shown in Fig. 3c.

In contrast, the orthorhombic lattice distortion as a rotation of BO₆ octahedra can be interpreted. In the Fmmm structure model the MnO₆ octahedra have no rotation. The rotated MnO₆ octahedra possess in both Abma model and Pccn model; the former model involves MnO₆ octahedra rotated along y-axis of the T structure (I4/mmm) and the latter the MnO₆ octahedra rotated along both x- and y-axes of the T structure. As shown in Fig. 4, the rotation of the MnO₆ octahedra is expressed by $|\varphi_1| = |\varphi_2| = 0$ for the *Fmmm* structure, $|\varphi_1| = 0$ and $|\varphi_2| \neq 0$ for *Abma* one, and $|\varphi_1| \neq |\varphi_2| \neq 0$ for *Pccn* one, where φ refers to the tilt angle. The calculated values of tilt angle for $Ca_{2-x}Gd_xMnO_4$ with *Pccn* superstructure resulted in $\varphi_1 = 3.01$ and $\varphi_2 = 0.51$ for x = 0.35, $\varphi_1 = 5.98$ and $\varphi_2 = 1.51$ for x = 0.4 and $\varphi_1 = 6.72$ and $\varphi_2 = 0.25$ for x = 0.45. The angle φ_1 increases with an increase of x. On the other hand, the angle φ_2 shows the maximum with x = 0.4. In addition, as shown in Table 1, the absolute values of the coordination z between O2 and O3 for x = 0.4 in

Fig. 4. Rotation of MnO₆ octahedra.

Ca_{2-x}Gd_xMnO₄ are different, while those for x = 0.35 and 0.45 are close to each other. These trends of the change in the tilt angle φ and the oxygen displacement toward [001] direction predict the distorted-orthorhombic superstructure-transformation as a sequence of a pseudo-*Abma* (x = 0.35), *Pccn* (x = 0.4), and the pseudo-*Abma* (x = 0.45) by increasing of x in Ca_{2-x}Gd_xMnO₄.

4. Conclusions

The Ca_{2-x}Gd_xMnO₄ solid solutions crystallized in K₂NiF₄-type structure with a space group of *I*4₁/*acd* (*x*=0), *I*4/*mmm* (*x*=0.2), *Pccn* (0.35 \le *x* \le 0.45). The orthorhombic *Pccn* structure contained the tilted MnO₆ octahedra with a different angle between *x* and *y*-axes of the unit cell. The most distorted orthorhombic structure was found in Ca_{1.6}Gd_{0.4}MnO₄, in which the bending angle of Mn–O–Mn taken along the *ab* plane was around 170°.

Acknowledgement

This work was supported by the Grant-in-Aid for Scientific Research by the Japan Society for the Promotion of Science.

References

- [1] A. Daoudi, G. Le Flem, J. Solid State Chem. 5 (1972) 57.
- [2] C. Chaumont, A. Daoudi, G. Le Flem, P. Hagenmuller, J. Solid State Chem. 14 (1975) 335.
- [3] C.R. Michel, R. Amigo, N. Casan-Pastor, Chem. Mater. 11 (1999) 195.
- [4] N. Kamegashira, A. Shimono, H.W. Xu, H. Satoh, K. Hayashi, T. Kikuchi, Mater. Chem. Phys. 26 (1990) 483.
- [5] W.H. Jung, E. Iguchi, J. Phys. D: Appl. Phys. 31 (1998) 794.
- [6] A. Maignan, C. Martin, G. Van Tendeloo, M. Hervieu, B. Raveau, J. Mater. Chem. 8 (1998) 2411.

- [7] C. Autret, R. Retoux, M. Hervieu, B. Raveau, Chem. Mater. 13 (2001) 4745.
- [8] J. Takahashi, N. Kamegashira, Mater. Res. Bull. 28 (1993) 451.
- [9] M.E. Leonowicz, K.R. Poeppelmeier, J.M. Longo, J. Solid State Chem. 59 (1985) 71.
- [10] J. Takahashi, N. Kamegashira, Mater. Res. Bull. 28 (1993) 565.
- [11] J. Takahashi, T. Kikuchi, H. Satoh, N. Kamegashira, J. Alloys Compds. 192 (1993) 96.
- [12] H. Saito, Y. Inoue, F. Munakata, M. Yamanaka, J. Takahashi, N. Kamegashira, Y. Koyama, Physica C 235–240 (1994) 753.

- [13] M.K. Crawfold, R.L. Harlow, E.M. McCarron, W.E. Farneth, N. Herron, H. Chou, D.E. Cox, Phys. Rev. B47 (1993) 11623.
- [14] M.K. Crawfold, R.L. Harlow, E.M. McCarron, W.E. Farneth, J.D. Axe, H. Chou, Q. Huang, Phys. Rev. B44 (1991) 7749.
- [15] Y. Koyama, Y. Wakabayashi, S.-I. Nakamura, Y. Inoue, K. Shinohara, Phys. Rev. B48 (1993) 9710.
- [16] N. Hara, T. Kamiyama, I. Kamata, I. Nakahara, H. Hayakawa, E. Akiba, H. Asano, Solid State Comm. 82 (1992) 975.
- [17] F. Izumi, J. Crystallogr. Soc. Jpn. 27 (1985) 23 (in Japanese).
- [18] F. Izumi, J. Mineral. Soc. Jpn. 17 (1985) 37 (in Japanese).
- [19] J. Rodrigues-Carvajal, M. Hennion, F. Moussa, A.H. Moudden, L. Pinsard, A. Revcolevschi, Phys. Rev. 57 (1998) R3189.